
A Bite Size Beam

GAIN AND DIRECTIVITY FOR 20 AND 15 METERS

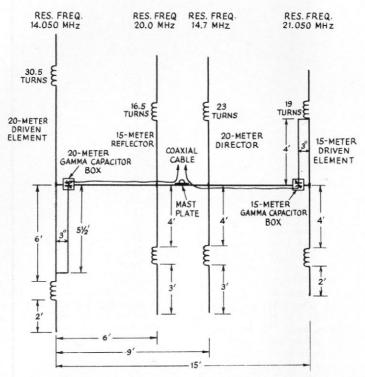
BY ROBERT M. MYERS,* W1FBY AND CLARKE GREENE,** WA1JLD

THERE IS NO DOUBT that a hundred-foot tower with stacked monobanders for 20 and 15 meters is one way to generate an effective signal in the pileups. But what are the characteristics of this big system which make it perform better than a dipole strung between two trees? First, the tall tower places the antenna up in the clear, away from most of the surrounding ground clutter. Even a relatively short tower (40-foot variety) provides this advantage in many instances. The ability to point the major radiation lobe of the antenna in the correct direction is another reason the high monobanders outperform the kinky wire. But if the antenna is capable of supporting its own elements, the directional characteristics can be used to good advantage whether the beam is mounted at 100 feet, or at 40 feet. And without any question, the ability to reject interference aids substantially in the reception of weak signals.

A typical one-foot-per-side triangle tower is self supporting (when properly installed) to 40 feet in height and requires less than one square foot of property. For many amateurs, the major limiting factor is the inability to turn a monoband beam (or even a large tribander) without hitting some object like a tall tree. Hesitation on behalf of the amateur to place what might be considered by his neighbors an offensive amount of hardware in the sky near his home is another reason beams are ruled out. The two-element-per-band 20- and 15-meter interlaced Yagi presented here, overcomes these

* Assistant Technical Editor, QST.

** 187 Stafford Ave., Forestville, CT 06010.


problems. It is lightweight and is less than 16-feet square. And it's probably no more obtrusive than a large TV antenna,

So, What if it's Short!

A popular misconception among amateurs is that any element short of full size is no good in an antenna system. Reducing the size of an antenna by 50 percent does lower the efficiency by a decibel or two, but the gain capability of a parasitic array outweighs this small loss in efficiency. Mounting the antenna above the inter-

Do you dream of working DX from your space-restricted QTH? Do you have problems with the neighborhood gang knocking down your No. 28 "invisible-wire" antenna with a football? Are tribanders too big for your backyard? If the answer to any (or all!) of these questions is yes, perhaps the two-band Yagi system described here is just the ticket needed to increase your DX effectiveness. Of course, the noticeable improvement in receiving conditions is a bonus feature which comes at no extra charge!

September 1973

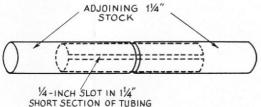


Fig. 1 — Constructional details for the 20- and 15-meter beam. The coils for each side of the dement are identical. The gamma capacitors are each 140-pF variable units manufactured by E.F. Johnson Co. The capacitors are insulated from ground within the container. Since the design is one-half size for each band, the tuning is somewhat critical. The builder is encouraged to follow carefully the dimensions given above.

ference-generating neighborhood can greatly reduce susceptibility to man-made noise and certainly aids in the reduction of rf heating to trees, telephone poles, and buildings. It has been said that a brick wall, or dense foliage, can attenuate a signal passed through it by as much as 20 dB. Placing the antenna above these energy-absorbing objects is very desirable.

It is a generally accepted fact that traps are difficult to build and adjust, as well as their being lossy. Loading coils, on the other hand, are easy to wind and require essentially no adjustment. If the wire size is large, losses are not a major factor. W2FMI lauded the merits of short antennas in an earlier article explaining that in reality, short (50 percent) elements do not materially depreciate the gain. With these ideas in mind, the authors designed and built a shortened-element, but wide spaced, director array for 20 meters interlaced with a similar 15-meter reflector configuration also having optimum spacing for maximum gain. By placing the 15-meter driven element in front of the 20-meter array, the longer 20-meter elements tend to act as reflectors on 15 meters. There are no unwanted reflectors "in front" nor any directors

¹ Sevick, "The W2FMI Ground-Mounted Short Vertical," QST, March, 1973.

The coils are wound on Plexiglas rod. Compression clamps are used to hold the Plexiglas in position. Sheet-metal screws and solder lugs provide attachment points for the ends of the loading coils.

View of the short beam from the front yard at W1CER.

"behind" the active array - elements which could cause pattern distortion and poor front-to-back ratio.

Construction

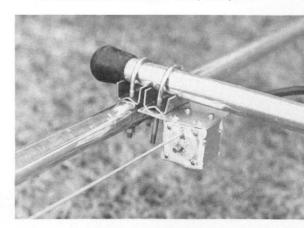
The dual-band beam has four elements, the longest of which is 16 feet. All of the elements and the boom are made from 1-1/4-inch diameter aluminum tubing available at most hardware stores. Element sections and boom pieces are joined together by slotting a 10-inch length of 1-1/4-inch tubing with a nibbling tool and compressing it for a snug fit inside the element and boom tubing. Coupling details are shown in Fig. 2.

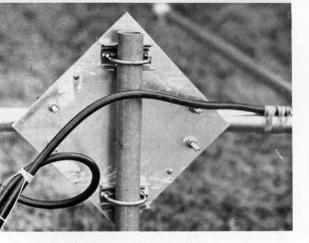
The loading coils are wound on 1-1/8-inch diameter Plexiglas rod. The rod slips into the element tubing and is held in place with compression clamps. Be sure to slit the end of the aluminum where the compression clamps are placed. The model shown in the photographs has coils made of surplus Teflon-insulated miniature audio coaxial cable with the shield braid and inner conductor shorted together. A suitable substitute would be No. 14 enameled copper wire wound to the same dimensions as those given in Fig. 1.

All of the elements are secured to the boom with common TV U-bolt hardware. Plated bolts are desirable to prevent rust from forming. A 1/4-inch thick boom-to-mast plate is constructed from a few pieces of sheet aluminum cut into 10-inch square sheets and held together with No. 8 hardware. Several cookie tins could be used if sheet aluminum is not available. One local amateur used a plate from a large electrical box as a boom-to-mast bracket. Since it is galvanized, it is quite resistant to the harsh New England winters.

A boom strut (sometimes called a truss) is recommended because the weight of the elements is sufficient to cause the boom to sag a bit. A 1/8-inch diameter nylon line is plenty strong. A U-bolt clamp is placed on the mast several feet above the antenna and provides the attachment point for the center of the truss line. To reduce the possibility of water accumulating in the element tubing and subsequently freezing (rupture may be the end result), crutch caps are placed over the element ends. Rubber feet suitable for keeping

The gamma assembly is held in place by means of a small U bolt. The capacitors are mounted on etched circuit board.

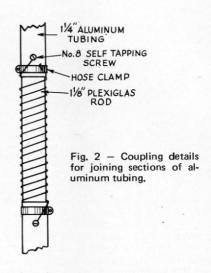

furniture from scratching hardwood floors would serve the same purpose. In fact, the rubber tips prevent the element ends from damaging surrounding objects during installation.


A heavy-duty steel mast should be used, such as a one-inch-diameter galvanized water pipe. Steel TV mast is also acceptable. Any conventional TV type antenna rotator should hold up under load conditions presented by this antenna. Nevertheless, certain precautions should be taken to assure continued trouble-free service. For instance, whenever possible, mount the rotator inside the tower and extend the mast through the tower top sleeve. This procedure relieves the rotator from having to handle lateral pressures during windy weather conditions. A thrust bearing is desirable to reduce downward forces on the rotator bearings.

Hookup and Operation

The monoband nature of the beam requires the use of two coaxial feed lines. The coaxial cable is attached to the 15-meter element (at the front of the beam) at the gamma-capacitor box. The other end of the cable is connected to a surplus 28-V dc single-pole coaxial switch.² The cable for the 20-meter element is connected in a similar fashion. The switch allows the use of a single feed line from the shack to a point just below the antenna where

² Purchased from Fair Radio Sales, Lima, OH.


The boom-to-mast plate.

the switch is mounted. It is a simple matter to provide voltage to the switch for operation on one of the two bands. At the price of coaxial cable today, a double run of feed line represents a substantial investment and should be avoided if possible.

An etched-circuit board was mounted inside an aluminum Minibox to provide support and insulation for each of the gamma tuning capacitors. Plastic refrigerator boxes available from most department stores would serve just as well. The capacitor housing is mounted to the boom by means of U bolts.

The builder is encouraged to follow the dimensions given in Fig. 1 as a starting point for the position of the gamma rods and shorting bar. Placing the antenna near the top of the tower and then tilting it to allow the capacitors to be reached makes it possible to adjust the capacitors for minimum SWR as indicated by an SWR meter (or power meter) connected in the feed line at the relay. If the SWR cannot be reduced below some nominal figure of approximately 1.4:1, a slight repositioning of the gamma short might be required. The dimensions given are for operation at 14.050 MHz and 21.050 MHz. The SWR climbs above 2:1 about 50 kHz in either direction from

TABLE I Complete parts list for the short beam. OTY MATERIAL Eight-foot lengths of aluminum tubing, 9 1-1/4" dia U bolts Variable capacitors, 140 pF (E.F. 2 Johnson) 4 Plexiglas cast rod, 1-1/8" dia Stainless steel hose clamps, 1-1/2" dia 16 Aluminum plate, eight-inches square 10 Aluminum solid rod, 1/4"dia Refrigerator boxes, 4 × 4 × 4 inches 25 Nylon rope, 1/8" dia 16 No. 8 sheet metal screws 16 No. 8 solder lugs Plastic (or rubber) end caps, 1-1/4" dia

the center frequency. Although tests were not conducted at more than 150 watts input to the transmitter there is no reason why the system would not operate correctly with a kilowatt of power supplied to it.

After many months of testing at the QTH of W1CER, several characteristics were noted. First, the antenna withstood several wind and ice storms common to Connecticut. Performance turned out to be what can be expected from a two-element Yagi. Since the 20-meter portion of the antenna is a director array, the front-to-back ratio is a bit less than 10 dB. On 15 meters where the system operates with a reflector parasitic element, the front-to-back ratio is considerably better — on the order of 15 dB.

This antenna was mounted atop a 40-foot tower where previously there was connected a 20-meter sloping dipole pointed at Europe (a multielement array for two meters graced the top of the tower!). The number of European stations contacted increased rather dramatically with the installation of the beam. Except in pileups on rare DX stations, DX is now worked as a routine, even though W1CER is a QRP fan and typically runs less than two watts of output power.

No doubt the increased effectiveness of the signal was caused by several factors. The antenna certainly has gain (although at ARRL Hq. we have no way of making accurate measurements) and is well above the nearby small trees. More importantly, the antenna is now far from the aluminum house siding which once was directly in the pattern of the 20-meter "sloper." Of course, the front-to-back characteristic has the tendency of making DX signals louder in relation to stateside stations and therefore makes receiving much easier.

If previously you've felt that a beam and tower were not possible at your QTH, perhaps re-evaluation of the situation is in order. This antenna, as shown in the photograph, does not appear offensive when viewed from the front yard. Yet the overall amount of property occupied (at ground level) is less than one square foot. And the turning radius is slightly over eleven feet!